
Berkeley Lab helps explore mysteries of asteroid Bennu
https://www.eurekalert.org/news-releases/1072028
INTRO: During the past year, there’s been an unusual set of samples at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab): material gathered from the 4.5-billion-year-old asteroid Bennu when it was roughly 200 million miles from Earth.
Berkeley Lab is one of more than 40 institutions investigating Bennu’s chemical makeup to better understand how our solar system and planets evolved. In a new study published today in the journal Nature, researchers found evidence that Bennu comes from an ancient wet world, with some material from the coldest regions of the solar system, likely beyond the orbit of Saturn.
The asteroid contained a set of salty mineral deposits that formed in an exact sequence when a brine evaporated, leaving clues about the type of water that flowed billions of years ago. Brines could be a productive broth for cooking up some of the key ingredients of life, and the same type of minerals are found in dried-up lake beds on Earth (such as Searles Lake in California) and have been observed on Jupiter’s moon Europa and Saturn’s moon Enceladus... (MORE - details, no ads)
- - - - - - - - - - - -
Dust from asteroid Bennu shows: Building blocks of life and possible habitats were widespread in our solar system
https://www.eurekalert.org/news-releases/1072060
EXCERPTS: It took two years for NASA’s OSIRIS-REx space probe to return from asteroid Bennu before dropping off a small capsule as it flew past Earth, which was then recovered in the desert of the U.S. state of Utah on September 24, 2023. Its contents: 122 grams of dust and rock from asteroid Bennu.
The probe had collected this sample from the surface of the 500-metre agglomerate of unconsolidated material in a touch-and-go maneuver that took just seconds. Since the capsule protected the sample from the effects of the atmosphere, it could be analyzed in its original state...
[...] “Together with our international partner teams, we have been able to detect a large proportion of the minerals that are formed when salty, liquid water – known as brine – evaporates more and more and the minerals are precipitated in the order of their solubility,” explains Dr. Sheri Singerling...
[...] “Other teams have found various precursors of biomolecules such as numerous amino acids in the Bennu samples,” reports Prof. Frank Brenker. “This means that Bennu’s parent body had some known building blocks for biomolecules, water and – at least for a certain time – energy to keep the water liquid.” However, the break-up of Bennu’s parent body interrupted all processes very early on and the traces that have now been discovered were preserved for more than 4.5 billion years... (MORE - details, no ads)
https://www.eurekalert.org/news-releases/1072028
INTRO: During the past year, there’s been an unusual set of samples at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab): material gathered from the 4.5-billion-year-old asteroid Bennu when it was roughly 200 million miles from Earth.
Berkeley Lab is one of more than 40 institutions investigating Bennu’s chemical makeup to better understand how our solar system and planets evolved. In a new study published today in the journal Nature, researchers found evidence that Bennu comes from an ancient wet world, with some material from the coldest regions of the solar system, likely beyond the orbit of Saturn.
The asteroid contained a set of salty mineral deposits that formed in an exact sequence when a brine evaporated, leaving clues about the type of water that flowed billions of years ago. Brines could be a productive broth for cooking up some of the key ingredients of life, and the same type of minerals are found in dried-up lake beds on Earth (such as Searles Lake in California) and have been observed on Jupiter’s moon Europa and Saturn’s moon Enceladus... (MORE - details, no ads)
- - - - - - - - - - - -
Dust from asteroid Bennu shows: Building blocks of life and possible habitats were widespread in our solar system
https://www.eurekalert.org/news-releases/1072060
EXCERPTS: It took two years for NASA’s OSIRIS-REx space probe to return from asteroid Bennu before dropping off a small capsule as it flew past Earth, which was then recovered in the desert of the U.S. state of Utah on September 24, 2023. Its contents: 122 grams of dust and rock from asteroid Bennu.
The probe had collected this sample from the surface of the 500-metre agglomerate of unconsolidated material in a touch-and-go maneuver that took just seconds. Since the capsule protected the sample from the effects of the atmosphere, it could be analyzed in its original state...
[...] “Together with our international partner teams, we have been able to detect a large proportion of the minerals that are formed when salty, liquid water – known as brine – evaporates more and more and the minerals are precipitated in the order of their solubility,” explains Dr. Sheri Singerling...
[...] “Other teams have found various precursors of biomolecules such as numerous amino acids in the Bennu samples,” reports Prof. Frank Brenker. “This means that Bennu’s parent body had some known building blocks for biomolecules, water and – at least for a certain time – energy to keep the water liquid.” However, the break-up of Bennu’s parent body interrupted all processes very early on and the traces that have now been discovered were preserved for more than 4.5 billion years... (MORE - details, no ads)