Nov 6, 2024 06:18 AM
https://www.eurekalert.org/news-releases/1063781
INTRO: Large language models can do impressive things, like write poetry or generate viable computer programs, even though these models are trained to predict words that come next in a piece of text.
Such surprising capabilities can make it seem like the models are implicitly learning some general truths about the world.
But that isn’t necessarily the case, according to a new study. The researchers found that a popular type of generative AI model can provide turn-by-turn driving directions in New York City with near-perfect accuracy — without having formed an accurate internal map of the city.
Despite the model’s uncanny ability to navigate effectively, when the researchers closed some streets and added detours, its performance plummeted.
When they dug deeper, the researchers found that the New York maps the model implicitly generated had many nonexistent streets curving between the grid and connecting far away intersections.
This could have serious implications for generative AI models deployed in the real world, since a model that seems to be performing well in one context might break down if the task or environment slightly changes.
“One hope is that, because LLMs can accomplish all these amazing things in language, maybe we could use these same tools in other parts of science, as well. But the question of whether LLMs are learning coherent world models is very important if we want to use these techniques to make new discoveries,” says senior author Ashesh Rambachan, assistant professor of economics and a principal investigator in the MIT Laboratory for Information and Decision Systems (LIDS).
Rambachan is joined on a paper about the work by lead author Keyon Vafa, a postdoc at Harvard University; Justin Y. Chen, an electrical engineering and computer science (EECS) graduate student at MIT; Jon Kleinberg, Tisch University Professor of Computer Science and Information Science at Cornell University; and Sendhil Mullainathan, an MIT professor in the departments of EECS and of Economics, and a member of LIDS. The research will be presented at the Conference on Neural Information Processing Systems... (MORE - details, no ads)
INTRO: Large language models can do impressive things, like write poetry or generate viable computer programs, even though these models are trained to predict words that come next in a piece of text.
Such surprising capabilities can make it seem like the models are implicitly learning some general truths about the world.
But that isn’t necessarily the case, according to a new study. The researchers found that a popular type of generative AI model can provide turn-by-turn driving directions in New York City with near-perfect accuracy — without having formed an accurate internal map of the city.
Despite the model’s uncanny ability to navigate effectively, when the researchers closed some streets and added detours, its performance plummeted.
When they dug deeper, the researchers found that the New York maps the model implicitly generated had many nonexistent streets curving between the grid and connecting far away intersections.
This could have serious implications for generative AI models deployed in the real world, since a model that seems to be performing well in one context might break down if the task or environment slightly changes.
“One hope is that, because LLMs can accomplish all these amazing things in language, maybe we could use these same tools in other parts of science, as well. But the question of whether LLMs are learning coherent world models is very important if we want to use these techniques to make new discoveries,” says senior author Ashesh Rambachan, assistant professor of economics and a principal investigator in the MIT Laboratory for Information and Decision Systems (LIDS).
Rambachan is joined on a paper about the work by lead author Keyon Vafa, a postdoc at Harvard University; Justin Y. Chen, an electrical engineering and computer science (EECS) graduate student at MIT; Jon Kleinberg, Tisch University Professor of Computer Science and Information Science at Cornell University; and Sendhil Mullainathan, an MIT professor in the departments of EECS and of Economics, and a member of LIDS. The research will be presented at the Conference on Neural Information Processing Systems... (MORE - details, no ads)
