Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5

Your brain Is not a computer. It is a transducer.

#1
C C Offline
https://www.discovermagazine.com/mind/yo...transducer

EXCERPTS (Robert Epstein): . . . Where is all this original music coming from? My mother has never composed music, and she insists she would be incapable of doing so "no matter how much you paid me." That’s mom-speak for case closed.

In case you haven’t noticed, we are surrounded by mysteries like this. Some, in my view, are highly suspect, such as demonic possession and communication with spirits. Others are undeniably real: dreams, daydreams, hallucinations, the déjà vu experience, and so on. My staff recently came up with a list of 58 such phenomena. You don’t have to look far to find them.

Are we doomed to remain in the dark about these mysteries, or is there a way to peel back the veil? What if spirits, dreams, and my mom’s music could all be accounted for by a relatively simple idea about how the brain works — an idea that might even be testable?

The idea, which is quite simple on its face, is that the brain is a bidirectional transducer.

[...] when I speak into my microphone, the pattern of sound waves produced by my voice — a distinctive, non-random pattern of air pressure waves — is being converted by the microphone into a similar pattern of electrical activity. The better the microphone, the more accurately it duplicates the original pattern, and the more I sound like me at the other end.

That conversion process — the shifting of a meaningful, non-random pattern of activity — from one medium (say, the air in front of the microphone) to another medium (say, the wire at the back of a microphone) is called transduction.

And transduction is all around us, even in organic processes. Our bodies are completely encased by transducers. Our sense organs — eyes, ears, nose, tongue, and skin —transduce distinctive properties of electromagnetic radiation, air pressure waves, airborne chemicals, liquid-borne chemicals, textures, pressure, and temperature into distinctive patterns of electrical and chemical activity in the brain. Organic compounds can even be used these days to create new kinds of transducers, such as OECTs: organic electrochemical transistors.

Evolution didn’t just create millions of new species of organisms, it also created millions of new types of transducers, and engineers are now using both organic and inorganic materials to create thousands more.

To repeat (because this is important): Transduction is all around us — forms of transduction that have evolved over eons and new forms of transduction that humans are inventing right now.

The Ultimate Transducer. What if evolution, at some point, produced a special kind of transducer that could shift signals from the physical world as we know it to a very different kind of world?

Nearly all religions teach that immaterial realms exist that transcend the reality we know. [...] The idea of a realm transcending the one we experience directly has taken on many forms over the centuries.

[...] The connection between physics and modern theories of mind and consciousness is tenuous at best, but modern physicists do take the idea of parallel universes seriously. They debate the details, but they can hardly ignore the fact that the mathematics of at least three of the grand theories at the core of modern physics — inflation theory, quantum theory, and string theory — predict the existence of alternate universes. Some physicists even believe that signals can leak between the universes and that the existence of parallel universes can be confirmed through measurements or experiments.

[...] Again, setting the details aside, physicists agree that the three-dimensional space we experience is simply not the whole picture. As theoretical physicist Lee Smolin put it recently, “Space is dead.”

Evidence for Transduction? Hard evidence that supports a neural transduction theory is lacking at the moment, but we are surrounded by odd phenomena that are at least consistent with such a theory...

[...] For more than two centuries, medical journals have published credible reports of highly impaired, uncommunicative people who suddenly became lucid for a few minutes before they died. There are documented cases in which people with dementia, advanced Alzheimer’s, schizophrenia, and even severe brain damage —– people who have not been able to speak or to recognize their closest relatives for years — suddenly recognized their loved ones and spoke normally.

[...] If the brain is a self-contained information processor, how can we explain the sudden return of lucidity when the brain is severely damaged? For that matter, think about the variability that occurs in your own lucidity over the course of 24 hours, during which you are, at various times, completely unconscious, partially conscious, or fully conscious. If you add drugs and alcohol to the picture, the variability is even greater, and it can be quite bizarre.

[...] What if the variability is not caused by changes in processing power in the brain but rather by transduction effects? By changes occurring not in our local universe but in the OS? Or by minor changes occurring at the point of connection? Or by changes occurring in brain structures that are essential to signal transfers?

I’ve also been intrigued by what appear to be credible reports about visual experiences that some congenitally-blind people have had when they were near death. Experiences of this sort were first summarized in a 1997 paper by Kenneth Ring and Sharon Cooper, later expanded into a book called Mindsight (1999). The paper and book describe the experiences of 14 people who were blind from birth and who had near-death experiences (NDEs), some of which included content that appeared to be visual in nature...

[...] Just recently, an Australian woman made the news worldwide when, post surgery, she woke up with an Irish accent. Her strong Australian accent was completely gone. Called ‘the foreign accent syndrome’, this sudden switch in accents is rare but real. The shift doesn’t make sense given the framework of reasoning we usually apply to the world, but what if it’s a transduction error?

[...] In fact, when viewed through the lens of transduction theory, none of these odd phenomena — dreams, hallucinations, lucidity that comes and goes, blind vision, and so on — looks mysterious.

And All That Jazz. This brings me, reluctantly, to the recent rise of “postmaterialist” science, or at least postmaterialist psychology. [...] Postmaterialism is all about controlled experiments that have supposedly proved, or at least supported, claims that mediums can communicate with the dead, that ghosts will happily comply when we ask them to climb into little boxes in a laboratory, that people can send their thoughts to strangers in another room telepathically, and that future events can somehow travel backward in time to impact people’s current behavior.

I am so tempted here to start naming names and tearing down reputations [...] Fortunately, I don’t need to tear apart shoddy thinking or flawed experiments to advocate for transduction theory. In fact, if this theory proves to be valid, every fantasy of the postmaterialists will be fulfilled — every fantasy except one, that is, and that is the postmaterialist claim itself. That’s because parallel universes are not wispy, physics-free spiritual entities; according to many mainstream physicists, they are just non-obvious companions of the material universe in which we happen to live.

[...] A Better Brain Theory. Let’s set aside both the mundane and the exotic reasons we should take transduction theory seriously and get to the heart of the matter: The main reason we should give serious thought to such a theory has nothing to do with ghosts. It has to do with the sorry state of brain science and its reliance on the computer metaphor.

One of my research assistants recently calculated that Beethoven’s thirty-two piano sonatas contain a total of 307,756 notes, and that doesn’t take into account the hundreds of sections marked with repeat symbols. Beethoven’s scores also include more than 100,000 symbols that guide the pianist’s hands and feet: time signatures, pedal notations, accent marks, slur and trill marks, key signatures, rests, clefs, dynamic notations, tempo marks, and so on.

Why am I telling you about Beethoven? Because piano virtuoso and conductor Daniel Barenboim memorized all thirty-two of Beethoven’s sonatas by the time he was 17, and he has since memorized hundreds of other major piano works, as well as dozens of entire symphony scores — tens of millions of notes and symbols.

Do you think all this content is somehow stored in Barenboim’s ever-changing, ever-shrinking, ever-decaying brain? Sorry, but if you study his brain for a hundred years, you will never find a single note, a single musical score, a single instruction for how to move his fingers — not even a “representation” of any of those things. The brain is simply not a storage device. It is an extraordinary entity for sure, but not because it stores or processes information. (See my Aeon essay, “The Empty Brain,” for more of my thinking on this issue, and for a truly great thrill, watch Barenboim play the third movement from Beethoven’s 14th piano sonata here.)

Over the centuries — completely baffled by where human intelligence comes from — people have used one metaphor after another to ‘explain’ our extraordinary abilities, beginning, of course, with the divine metaphor millennia ago and progressing – and I use that word hesitatingly — to the current information-processing metaphor. I am proposing now that we abandon the metaphors and begin to consider substantive ideas we can test.

To be clear: I am not offering transduction theory as yet another metaphor. I am suggesting that the brain is truly a bidirectional transducer and that, over time, we will find empirical support for this theory.

[...] If we can cast some aspects of transduction theory into formal, predictive terms (I’m working on that now and am looking for collaborators), we might be able to make specific predictions about transduction — about subtle variations in reaction times, for example, or about how transduction errors might help us explain schizophrenia. We might also be able to predict quantitative aspects of dreams, daydreams, hallucinations, and more.

Ignore It at Your Peril. [...] If we transported a 17th century scientist to the present day and showed him or her how well we can converse with someone using a cell phone, he or she would almost certainly want to look inside the phone. The remote voice must be in the phone, after all. To put this another way, a Renaissance scientist would naively view the phone as a self-contained processing unit, much as today’s brain scientists naively view the brain.

But that scientist will never find the remote voice inside the phone, because it is not there to be found. If we explain to the scientist that the phone is a transducer, however, he or she will now examine the phone in a different way, searching for evidence of transduction, which he or she — aided by appropriate instruments and knowledge — will eventually find.

And here is the problem: If you never teach that scientist about transduction, he or she might never unravel the mysteries of that phone.

[...] If modern brain scientists begin to look for evidence that the brain is a transducer, they might find it directly through a new understanding of neural pathways, structures, electro-chemical activity, or brain waves. Or they might find such evidence indirectly by simulating aspects of brain function that appear to be capable of transducing signals. They might even be able to create devices that send signals to a parallel universe, or, of greater interest, that receive signals from that universe...

[...] It might take decades for us to see significant advances in transduction research, but with vast resources already devoted to the brain sciences, we could conceivably move much faster. And if you’re worried that transduction theory is just another one of those inherently untestable theories — like string theory or theories about parallel universes — think again. With neural transduction theory, we have an enormous advantage: The transduction device is available for immediate in-depth study.

Implications and Final Notes. Will transduction theory finally clear up the old consciousness problem? That I doubt, because I don’t think there is a consciousness problem. Consciousness is just the experience we have when we’re observing ourselves or the world. It seems grand simply because we’re part of the system we’re observing. It’s a classic example of how difficult it can be to study a system of which one is an integral part; think of this problem as a kind of Gödel’s theorem of the behavioral sciences. (For my whole spiel on this issue, see my 2017 essay, “Decapitating Consciousness.”)

[...] If transduction theory proves to be correct, our understanding of the universe and of our place in it will change profoundly... (MORE - missing details)
Reply
#2
Magical Realist Offline
Quote: "Consciousness is just the experience we have when we’re observing ourselves or the world. It seems grand simply because we’re part of the system we’re observing. It’s a classic example of how difficult it can be to study a system of which one is an integral part; think of this problem as a kind of Gödel’s theorem of the behavioral sciences."

True in part imo, but consciousness also presents us with the mystery of self-containment. Just as the physical world has it's own causal closure, so too does consciousness have its own solipstic "in itself" being. We can't speak or think of anything that isn't part of consciousness already, be it a property or thing or principle. Our very being assumes it's preexistence, just as it also assumes the preexistence of physical reality. It is this "gap" that literally keeps consciousness in a realm all by itself.
Reply
#3
Zinjanthropos Offline
Unfortunately being able to play flawless Beethoven is probably not the best tool for survival should there be a species threatening apocalypse. A bush hermit who can’t play a kazoo but can live off the land has a better chance. Maybe Barenboim can do both, don’t know. Regardless, piano/kazoo playing won’t be the survival tool that keeps the species from becoming extinct.

This article is ammo for those who believe hallucinogenic drug use opens a portal to another realm and is fodder for dream analysts. Yet if drugs can do it, then maybe that undigested beef does have something to do with finding Nirvana. Or mastering Beethoven? If I’m on the slab, cut open, full of drugs and I start talking with an Irish accent should I be surprised or just think it’s the hidden power of my transducer brain?

Now I don’t know what to think when my pc doesn’t get the context of my typing or suddenly does something completely unexpected. My Google Home started babbling the other day without a command from myself or my wife. Was it encountering another realm? A command from a parallel universe? Now why did my garage door open by itself?

Actually I’ll give the author credit for his thoughts. More impressed when someone introduces a new possibility with original thought. Is this idea a true science of religion? Will religion run with this in the future?
Reply




Users browsing this thread: 1 Guest(s)