Engineering better photosynthesis to feed the world


INTRO: In the hot springs of Yellowstone National Park, layers of colorful bacteria grow in thick mats. Near the water’s surface, the green organisms photosynthesize like plants do, using light and chlorophyll to split water molecules and make sugar. Farther down in the mats, the microbes are black. Researchers long assumed that plant-like photosynthesis is not possible for this layer of organisms because they don’t have access to enough visible light. And yet, on the very bottoms of those algal mats is a layer of green where no green should be. So why is it here, where almost no light reaches?

Plant scientists hope to engineer crops that can perform efficient photosynthesis deeper in the canopy.

In June, Bill Rutherford and his team at Imperial College London discovered that photosynthesis using near infrared light — the type found in heavy shade — is possible, and even widespread, in cyanobacteria. This finding contributes to a growing body of research in the field of photosynthesis engineering, which aims to improve crop yields by using genetic techniques to improve a plant’s ability to capture sunlight and produce sugar. The implications are huge. By the year 2050, the U.N. Food and Agriculture Organization predicts that crop yields will need to be 60 percent higher relative to 2005 levels in order to meet increasing food demands. Conventional breeding has largely reached its full potential for yield increase. As such, using genetic engineering to target photosynthesis may be one of the few avenues left with significant room for improvement.

Of course, plant researchers have been thinking about using improved photosynthesis to increase crop yields for decades, but recent leaps in computer modelling and genetic engineering techniques have started to bring that goal within reach. In 2011, and again in 2015, a group of scientists came together to publish an article that called for research into the improvement of photosynthesis as a means for meeting the increased yield demands of coming decades, as well as laying out potential strategies. One of the strategies the group highlighted was the possibility of engineering plants to use near infrared light....


Possibly Related Threads...
Thread Author Replies Views Last Post
  Industrial microbes could feed cattle, pigs, chicken C C 1 155 Jun 21, 2018 04:38 AM
Last Post: Syne

Users browsing this thread: 1 Guest(s)