Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5

New form of light + New geometries for black holes

#1
C C Offline
Scientists discover light could exist in a previously unknown form
https://www.sciencedaily.com/releases/20...092214.htm

RELEASE: New research suggests that it is possible to create a new form of light by binding light to a single electron, combining the properties of both.

According to the scientists behind the study, from Imperial College London, the coupled light and electron would have properties that could lead to circuits that work with packages of light -- photons -- instead of electrons.

It would also allow researchers to study quantum physical phenomena, which govern particles smaller than atoms, on a visible scale.

In normal materials, light interacts with a whole host of electrons present on the surface and within the material. But by using theoretical physics to model the behaviour of light and a recently-discovered class of materials known as topological insulators, Imperial researchers have found that it could interact with just one electron on the surface.

This would create a coupling that merges some of the properties of the light and the electron. Normally, light travels in a straight line, but when bound to the electron it would instead follow its path, tracing the surface of the material.

In the study, published today in Nature Communications, Dr Vincenzo Giannini and colleagues modelled this interaction around a nanoparticle -- a small sphere below 0.00000001 metres in diameter -- made of a topological insulator.

Their models showed that as well as the light taking the property of the electron and circulating the particle, the electron would also take on some of the properties of the light.

Normally, as electrons are travelling along materials, such as electrical circuits, they will stop when faced with a defect. However, Dr Giannini's team discovered that even if there were imperfections in the surface of the nanoparticle, the electron would still be able to travel onwards with the aid of the light.

If this could be adapted into photonic circuits, they would be more robust and less vulnerable to disruption and physical imperfections.

Dr Giannini said: "The results of this research will have a huge impact on the way we conceive light. Topological insulators were only discovered in the last decade, but are already providing us with new phenomena to study and new ways to explore important concepts in physics."

Dr Giannini added that it should be possible to observe the phenomena he has modelled in experiments using current technology, and the team is working with experimental physicists to make this a reality.

He believes that the process that leads to the creation of this new form of light could be scaled up so that the phenomena could observed much more easily. Currently, quantum phenomena can only be seen when looking at very small objects or objects that have been super-cooled, but this could allow scientists to study these kinds of behaviour at room temperature.



Do black holes have a back door?
https://www.sciencedaily.com/releases/20...085747.htm

RELEASE: One of the biggest problems when studying black holes is that the laws of physics as we know them cease to apply in their deepest regions. Large quantities of matter and energy concentrate in an infinitely small space, the gravitational singularity, where space-time curves towards infinity and all matter is destroyed. Or is it? A recent study by researchers at the Institute of of Corpuscular Physics (IFIC, CSIC-UV) in Valencia suggests that matter might in fact survive its foray into these space objects and come out the other side.

Published in the journal Classical and Quantum Gravity, the Valencian physicists propose considering the singularity as if it were an imperfection in the geometric structure of space-time. And by doing so they resolve the problem of the infinite, space-deforming gravitational pull.

"Black holes are a theoretical laboratory for trying out new ideas about gravity," says Gonzalo Olmo, a Ramón y Cajal grant researcher at the Universitat de València (University of Valencia, UV). Alongside Diego Rubiera, from the University of Lisbon, and Antonio Sánchez, PhD student also at the UV, Olmo's research sees him analysing black holes using theories besides general relativity (GR).

Specifically, in this work he has applied geometric structures similar to those of a crystal or graphene layer, not typically used to describe black holes, since these geometries better match what happens inside a black hole: "Just as crystals have imperfections in their microscopic structure, the central region of a black hole can be interpreted as an anomaly in space-time, which requires new geometric elements in order to be able to describe them more precisely. We explored all possible options, taking inspiration from facts observed in nature."

Using these new geometries, the researchers obtained a description of black holes whereby the centre point becomes a very small spherical surface. This surface is interpreted as the existence of a wormhole within the black hole. "Our theory naturally resolves several problems in the interpretation of electrically-charged black holes," Olmo explains. "In the first instance we resolve the problem of the singularity, since there is a door at the centre of the black hole, the wormhole, through which space and time can continue."

This study is based on one of the simplest known types of black hole, rotationless and electrically-charged. The wormhole predicted by the equations is smaller than an atomic nucleus, but gets bigger the bigger the charge stored in the black hole. So, a hypothetical traveller entering a black hole of this kind would be stretched to the extreme, or "spaghettified," and would be able to enter the wormhole. Upon exiting they would be compacted back to their normal size.

Seen from outside, these forces of stretching and compaction would seem infinite, but the traveller himself, living it first-hand, would experience only extremely intense, and not infinite, forces. It is unlikely that the star of Interstellar would survive a journey like this, but the model proposed by IFIC researchers posits that matter would not be lost inside the singularity, but rather would be expelled out the other side through the wormhole at its centre to another region of the universe.

Another problem that this interpretation resolves, according to Olmo, is the need to use exotic energy sources to generate wormholes. In Einstein's theory of gravity, these "doors" only appear in the presence of matter with unusual properties (a negative energy pressure or density), something which has never been observed. "In our theory, the wormhole appears out of ordinary matter and energy, such as an electric field" (Olmo).

The interest in wormholes for theoretical physics goes beyond generating tunnels or doors in spacetime to connect two points in the Universe. They would also help explain phenomena such as quantum entanglement or the nature of elementary particles. Thanks to this new interpretation, the existence of these objects could be closer to science than fiction.
Reply


Possibly Related Threads…
Thread Author Replies Views Last Post
  Article Swirling forces, crushing pressures measured in the proton + Do black holes explode? C C 0 12 Mar 15, 2024 06:25 PM
Last Post: C C
  Article How black holes consume entropy + Is anything absolute with relativity? C C 0 85 Nov 16, 2023 04:36 PM
Last Post: C C
  Article Black holes might be defects in spacetime C C 1 80 May 17, 2023 06:45 PM
Last Post: C C
  Black holes will eventually destroy all quantum states, researchers argue C C 2 83 Mar 27, 2023 07:18 PM
Last Post: C C
  Black holes could reveal their quantum-superposition states, new calculations reveal C C 0 180 Nov 20, 2022 06:12 PM
Last Post: C C
  Will portraying black holes as holograms lead to new insights or comprehension? C C 0 152 Jun 4, 2020 08:56 PM
Last Post: C C
  Evidence of Anyons + Why the smallest black holes bend space the most C C 0 171 May 13, 2020 04:10 PM
Last Post: C C
  Weird new form of carbon + New state of matter: a Cooper pair metal C C 0 217 Nov 17, 2019 01:25 AM
Last Post: C C
  Physicists create new form of light C C 11 1,348 May 2, 2018 11:54 PM
Last Post: Ostronomos
  Black holes: Paradox regained C C 0 739 Nov 5, 2014 03:14 AM
Last Post: C C



Users browsing this thread: 1 Guest(s)