
https://www.eurekalert.org/news-releases/1064991
INTRO: A dog learns to sit on command, a person hears and eventually tunes out the hum of a washing machine while reading … The capacity to learn and adapt is central to evolution and, indeed, survival.
Habituation — adaptation’s less-glamorous sibling — involves the lessening response to a stimulus after repeated exposure. Think the need for a third espresso to maintain the same level of concentration you once achieved with a single shot.
Up until recently, habituation — a simple form of learning — was deemed the exclusive domain of complex organisms with brains and nervous systems, such as worms, insects, birds, and mammals.
But a new study, published Nov. 19 in Current Biology, offers compelling evidence that even tiny single-cell creatures such as ciliates and amoebae, as well as the cells in our own bodies, could exhibit habituation akin to that seen in more complex organisms with brains.
The work, led by scientists at Harvard Medical School and the Centre for Genomic Regulation (CRG) in Barcelona, suggests that single cells are capable of behaviors more complex than currently appreciated.
“This finding opens up an exciting new mystery for us: How do cells without brains manage something so complex?” said study senior author Jeremy Gunawardena, associate professor of systems biology in the Blavatnik Institute at HMS. He co-led the study with Rosa Martinez Corral, a former post-doctoral researcher in his lab who now leads a research group in systems and synthetic biology at CRG.
The results add to a small but growing body of work on this subject. Earlier work led by Gunawardena found that a single-cell ciliate showed avoidance behavior, not unlike the actions observed in animals that encounter unpleasant stimuli... (MORE - details, no ads)
INTRO: A dog learns to sit on command, a person hears and eventually tunes out the hum of a washing machine while reading … The capacity to learn and adapt is central to evolution and, indeed, survival.
Habituation — adaptation’s less-glamorous sibling — involves the lessening response to a stimulus after repeated exposure. Think the need for a third espresso to maintain the same level of concentration you once achieved with a single shot.
Up until recently, habituation — a simple form of learning — was deemed the exclusive domain of complex organisms with brains and nervous systems, such as worms, insects, birds, and mammals.
But a new study, published Nov. 19 in Current Biology, offers compelling evidence that even tiny single-cell creatures such as ciliates and amoebae, as well as the cells in our own bodies, could exhibit habituation akin to that seen in more complex organisms with brains.
The work, led by scientists at Harvard Medical School and the Centre for Genomic Regulation (CRG) in Barcelona, suggests that single cells are capable of behaviors more complex than currently appreciated.
“This finding opens up an exciting new mystery for us: How do cells without brains manage something so complex?” said study senior author Jeremy Gunawardena, associate professor of systems biology in the Blavatnik Institute at HMS. He co-led the study with Rosa Martinez Corral, a former post-doctoral researcher in his lab who now leads a research group in systems and synthetic biology at CRG.
The results add to a small but growing body of work on this subject. Earlier work led by Gunawardena found that a single-cell ciliate showed avoidance behavior, not unlike the actions observed in animals that encounter unpleasant stimuli... (MORE - details, no ads)