Nov 14, 2024 10:02 PM
https://www.nature.com/articles/d41586-024-03675-w
EXCERPT: Scientists have been trying to restore mobility for people with missing or paralysed limbs for decades. The aim, historically, was to give people the ability to control prosthetics with commands from the nervous system. But this motor-first approach produced bionic limbs that were much less helpful than hoped: devices were cumbersome and provided only rudimentary control of a hand or leg. What’s more, they just didn’t feel like they were part of the body and required too much concentration to use.
Scientists gradually began to realize that restoring full mobility meant restoring the ability to sense touch and temperature, says Robert Gaunt, a bioengineer at the University of Pittsburgh in Pennsylvania. Gaunt says that this realization has led to a revolution in the field.
A landmark study1 came in 2016, when a team led by Gaunt restored tactile sensations in a person with upper-limb paralysis using a computer chip implanted in a region of the brain that controls the hand. Gaunt then teamed up with his Pittsburgh colleague, bioengineer Jennifer Collinger, to integrate a robotic arm with the BCI, allowing the individual to feel and manipulate objects2. “It meant they could perform motor tasks much faster,” says Collinger. Around the same time, studies in people with limbs that have been amputated showed how restoring tactile inputs into peripheral nerves also drastically improved control of prosthetic hands3.
But researchers haven’t fully cracked the code on how to interpret or create natural sensations that truly benefit people’s lives. Somatosensation — the collection of senses that interpret touch, temperature, pain and body position — is dauntingly complex. Imagine trying to encode information that could discern a soft kiss from a painful pinch, or the needles of a pine tree from the bristles of a paintbrush. To create safe and stable interfaces with the brain and body, researchers need to make major advances in engineering as well as in understanding the sensorimotor system, says Rochelle Ackerley, a neuroscientist at Aix-Marseille University in France. And as developers look to increase the size of implanted-device trials, stakeholders have yet to solve ethical issues around the risks of BCIs and high-tech prosthetic devices... (MORE - missing details)
EXCERPT: Scientists have been trying to restore mobility for people with missing or paralysed limbs for decades. The aim, historically, was to give people the ability to control prosthetics with commands from the nervous system. But this motor-first approach produced bionic limbs that were much less helpful than hoped: devices were cumbersome and provided only rudimentary control of a hand or leg. What’s more, they just didn’t feel like they were part of the body and required too much concentration to use.
Scientists gradually began to realize that restoring full mobility meant restoring the ability to sense touch and temperature, says Robert Gaunt, a bioengineer at the University of Pittsburgh in Pennsylvania. Gaunt says that this realization has led to a revolution in the field.
A landmark study1 came in 2016, when a team led by Gaunt restored tactile sensations in a person with upper-limb paralysis using a computer chip implanted in a region of the brain that controls the hand. Gaunt then teamed up with his Pittsburgh colleague, bioengineer Jennifer Collinger, to integrate a robotic arm with the BCI, allowing the individual to feel and manipulate objects2. “It meant they could perform motor tasks much faster,” says Collinger. Around the same time, studies in people with limbs that have been amputated showed how restoring tactile inputs into peripheral nerves also drastically improved control of prosthetic hands3.
But researchers haven’t fully cracked the code on how to interpret or create natural sensations that truly benefit people’s lives. Somatosensation — the collection of senses that interpret touch, temperature, pain and body position — is dauntingly complex. Imagine trying to encode information that could discern a soft kiss from a painful pinch, or the needles of a pine tree from the bristles of a paintbrush. To create safe and stable interfaces with the brain and body, researchers need to make major advances in engineering as well as in understanding the sensorimotor system, says Rochelle Ackerley, a neuroscientist at Aix-Marseille University in France. And as developers look to increase the size of implanted-device trials, stakeholders have yet to solve ethical issues around the risks of BCIs and high-tech prosthetic devices... (MORE - missing details)
