Deconstructing Schrödinger’s Cat + Pitt study uncovers new electronic state of matter

#1
Deconstructing Schrödinger’s Cat
https://www.springer.com/gp/about-spring...t/17703780

RELEASE: The paradox of Schrödinger’s cat – the feline that is, famously, both alive and dead until its box is opened – is the most widely known example of a recurrent problem in quantum mechanics: its dynamics seems to predict that macroscopic objects (like cats) can, sometimes, exist simultaneously in more than one completely distinct state. Many physicists have tried to solve this paradox over the years, but no approach has been universally accepted. Now, however, theoretical physicist Franck Laloë from Laboratoire Kastler Brossel (ENS-Université PSL) in Paris has proposed a new interpretation that could explain many features of the paradox. He sets out a model of this possible theory in a new paper in EPJ D.

One approach to solving this problem involves adding a small, random extra term to the Schrödinger equation, which allows the quantum state vector to ‘collapse’, ensuring that – as is observed in the macroscopic universe – the outcome of each measurement is unique. Laloë’s theory combines this interpretation with another from de Broglie and Bohm and relates the origins of the quantum collapse to the universal gravitational field. This approach can be applied equally to all objects, quantum and macroscopic: that is, to cats as much as to atoms.

The idea of linking quantum collapse to gravity has already been proposed by the great English physicist and philosopher Roger Penrose, but he never developed his ideas into a complete theory. Laloë proposes a model that goes in the same direction, agrees with physical observations and may one day prove testable experimentally. It is relatively simple – ‘naive’, even – and introduces only one additional parameter to the standard equation. Laloë is planning to explore more consequences of his model in different situations. Furthermore, he suggests that a theory that combines quantum mechanics with gravitation may have implications in astrophysics.

http://dx.doi.org/10.1140/epjd/e2019-100434-1



Pitt study uncovers new electronic state of matter
https://www.innovations-report.com/html/...atter.html

RELEASE: A research team led by professors from the University of Pittsburgh Department of Physics and Astronomy has announced the discovery of a new electronic state of matter. Electrons travel in cars with increasing numbers, giving rise to a conductance series that shows up in Pascal's triangle. Jeremy Levy, a distinguished professor of condensed matter physics, and Patrick Irvin, a research associate professor are coauthors of the paper "Pascal conductance series in ballistic one-dimensional LaAIO3/SrTiO3 channels."

The research focuses on measurements in one-dimensional conducting systems where electrons are found to travel without scattering in groups of two or more at a time, rather than individually. The study was published in Science on Feb. 14. A video outlining the paper's findings can be seen here: https://www.youtube.com/watch?v=kDjGiH8O...e=youtu.be

"Normally, electrons in semiconductors or metals move and scatter, and eventually drift in one direction if you apply a voltage. But in ballistic conductors the electrons move more like cars on a highway. The advantage of that is they don't give off heat and may be used in ways that are quite different from ordinary electronics. Researchers before us have succeeded in creating this kind of ballistic conductor," explained Levy. "The discovery we made shows that when electrons can be made to attract one another, they can form bunches of two, three, four and five electrons that literally behave like new types of particles, new forms of electronic matter."

Levy compared the finding to the way in which quarks bind together to form neutrons and protons. An important clue to uncovering the new matter was recognizing that these ballistic conductors matched a sequence within Pascal's Triangle. "If you look along different directions of Pascal's Triangle you can see different number patterns and one of the patterns was one, three, six, 10, 15, 21. This is a sequence we noticed in our data ,so it became a challenging clue as to what was actually going on. The discovery took us some time to understand but it was because we initially did not realize we were looking at particles made up of one electron, two electrons, three electrons and so forth. If you combine all this together you get the sequence of 1,3,6,10."

Levy, who is also director of the Pittsburgh Quantum Institute, noted that the new particles feature properties related to quantum entanglement, which can potentially be used for quantum computing and quantum redistribution. He said the discovery is an exciting advancement toward the next stage of quantum physics. "This research falls within a larger effort here in Pittsburgh to develop new science and technologies related to the second quantum revolution," he said.

"In the first quantum revolution people discovered the world around them was governed fundamentally by laws of quantum physics. That discovery led to an understanding of the periodic table, how materials behave and helped in the development of transistors, computers, MRI scanners and information technology. Now in the 21st century, we're looking at all the strange predictions of quantum physics and turning them around and using them. When you talk about applications, we're thinking about quantum computing, quantum teleportation, quantum communications, quantum sensing--ideas that use properties of the quantum nature of matter that were ignored before."
Reply


Possibly Related Threads…
Thread Author Replies Views Last Post
  Weird new form of carbon + New state of matter: a Cooper pair metal C C 0 49 Nov 17, 2019 01:25 AM
Last Post: C C
  How hot is Schrödinger's coffee? C C 1 262 Aug 17, 2018 09:42 PM
Last Post: Magical Realist
  Physics makes aging inevitable, not biology + Schrodinger's cat in a black hole C C 0 399 May 14, 2016 05:32 AM
Last Post: C C



Users browsing this thread: 1 Guest(s)