Life likelier on tiny planets than those over 2.7x mass of Earth + Ocean styrofoam

Life Could Evolve on Tiny Planets With 3% of Earth’s Mass (intro): Could a tiny planet, with weak gravity, harbor life? A team of scientists from Harvard University say they’ve found the smallest possible mass a planet could be before its lack of gravitational forces would cause it to lose its atmosphere and any liquid water. They found that the smallest possible planet that could maintain those life-enabling properties would be about 2.7 percent of the mass of Earth. That’s a little more than twice the mass of the Moon and roughly half the mass of Mercury...

A goldilocks zone for planet size | Harvard John A. Paulson School of Engineering and Applied Sciences

RELEASE: In The Little Prince, the classic novella by Antoine de Saint-Exupéry, the titular prince lives on a house-sized asteroid so small that he can watch the sunset any time of day by moving his chair a few steps. Of course, in real life, celestial objects that small can’t support life because they don’t have enough gravity to maintain an atmosphere. But how small is too small for habitability?

In a recent paper, Harvard University researchers described a new, lower size limit for planets to maintain surface liquid water for long periods of time, extending the so-called Habitable or "Goldilocks’’ Zone for small, low-gravity planets. This research expands the search area for life in the universe and sheds light on the important process of atmospheric evolution on small planets. The research was published in The Astrophysical Journal.

“When people think about the inner and outer edges of the habitable zone, they tend to only think about it spatially, meaning how close the planet is to the star,” said Constantin Arnscheidt, A.B. ’18, first author of the paper. “But actually, there are many other variables to habitability, including mass. Setting a lower bound for habitability in terms of planet size gives us an important constraint in our ongoing hunt for habitable exoplanets and exomoons.”

Generally, planets are considered habitable if they can maintain surface liquid water long enough to allow for the evolution of life, conservatively about one billion years. Astronomers hunt for these habitable planets within specific distances of certain types of stars — stars that are smaller, cooler and lower mass than our Sun have a habitable zone much closer than larger, hotter stars. The inner-edge of the habitable zone is defined by how close a planet can be to a star before a runaway greenhouse effect leads to the evaporation of all the surface water. But, as Arnscheidt and his colleagues demonstrated, this definition doesn’t hold for small, low gravity planets.

The runaway greenhouse effect occurs when the atmosphere absorbs more heat that it can radiate back out into space, preventing the planet from cooling and eventually leading to unstoppable warming until its oceans turn to steam in the atmosphere. However, something important happens when planets decrease in size: as they warm, their atmospheres expand outward, becoming larger and larger relative to the size of the planet. These large atmospheres increase both the absorption and radiation of heat, allowing the planet to better maintain a stable temperature. The researchers found that atmospheric expansion prevents low-gravity planets from experiencing a runaway greenhouse effect, allowing them to maintain surface liquid water while orbiting in closer proximity to their stars.

When planets get too small, however, they lose their atmospheres altogether and the liquid surface water either freezes or vaporizes. The researchers demonstrated that there is a critical size below which a planet can never be habitable, meaning the habitable zone is bounded not only in space, but also in planet size.

The researchers found that the critical size is about 2.7 percent the mass of Earth. If an object is smaller than 2.7 percent the mass of Earth, its atmosphere will escape before it ever has the chance to develop surface liquid water, similar to what happens to comets in the Solar System today. To put that into context, the Moon is 1.2 percent of Earth mass and Mercury is 5.53 percent. The researchers were also able to estimate the habitable zones of these small planets around certain stars. Two scenarios were modeled for two different types of stars: a G-type star like our own Sun and an M-type star modeled after a red dwarf in the constellation Leo.

The researchers solved another long-standing mystery in our own solar system. Astronomers have long wondered whether Jupiter’s icy moons Europa, Ganymede, and Callisto would be habitable if radiation from the sun increased. Based on this research, these moons are too small to maintain surface liquid water, even if they were closer to the Sun. “Low-mass waterworlds are a fascinating possibility in the search for life, and this paper shows just how different their behaviour is likely to be compared to that of Earth-like planets,” said Robin Wordsworth, Associate Professor of Environmental Science and Engineering at SEAS and senior author of the study. “Once observations for this class of objects become possible, it’s going to be exciting to try to test these predictions directly.”

This paper was co-authored by Feng Ding, a postdoctoral fellow at the Harvard John A. Paulson School of Engineering and Applied Sciences.

Styrofoam might last only decades, not millennia, in the ocean

INTRO: From Maine to Maryland, from San Francisco to San Diego, legislators and city councilmembers have been banning expanded polystyrene—often known by the brand name Styrofoam—because they believe these products can last for millennia in the ocean. But new research suggests that polystyrene might break down into organic compounds much more quickly than expected, lessening its long-term environmental impact.

Earlier this month, researchers with the Woods Hole Oceanographic Institution and the Massachusetts Institute of Technology published a study finding that sunlight can breakdown polystyrene into organic carbon and trace amounts of carbon dioxide within a few decades. "The sunlight creates a pair of photochemical scissors and cuts the plastic enough so that it is no longer plastic, it's this cut up skeleton of a plastic," says Chris Reddy, one of the authors of the study. The end result is organic carbon that then dissolves in seawater.

That process can take decades. Sunlight can also complete oxidize polystyrene into carbon dioxide (converting it into "thin air," Reddy says), a process that can take about 10 times as long. n the past, scientists and policy makers had assumed that the degradation of polystyrene was controlled by how quickly tiny microbes could break the material down. Because polystyrene is difficult for these microbes to devour, people believed it would effectively last forever in the oceans. But the same things that make polystyrene hard for microbes to consume also make it easier for sunlight to break it apart.

While this study only focused on polystyrene, sunlight may play a similar role in breaking down other plastics. Reddy tells Reason that "it's entirely reasonable that photochemistry may be a factor in other plastics as well." (MORE)

Possibly Related Threads…
Thread Author Replies Views Last Post
  GW affects whole world except for one ocean area that bucks trend (ocean freak spots) C C 0 31 May 6, 2020 09:56 PM
Last Post: C C
  What Earth looks like with oceans dried up + Regulating deep ocean mining destruction C C 0 54 Feb 5, 2020 02:10 AM
Last Post: C C
  Life May Have Evolved Before Earth Finished Forming C C 0 152 Apr 27, 2019 10:51 PM
Last Post: C C
  Toffee Planets hint at Earth’s cosmic rarity + GW sharks have heavy metals in blood C C 0 170 Apr 4, 2019 09:12 PM
Last Post: C C
  Ancient Earth: Why formamide may have been early life’s alternative to water C C 0 210 Apr 28, 2018 09:22 PM
Last Post: C C
  Life deep in the Earth + Shrinking glaciers & volcanic activity + Trash Islands C C 3 615 Nov 28, 2017 02:03 AM
Last Post: Zinjanthropos
  How Snowball Earth shaped complex life C C 0 299 Aug 17, 2017 07:36 AM
Last Post: C C
  Earth's instant life + Pluto's nitrogen "sea" geology + Mars' weird spidery veins C C 2 1,127 Jan 14, 2016 09:11 PM
Last Post: C C
  Life on Earth older than the oldest rocks + Crackdown on disposal wells after quake C C 0 634 Oct 20, 2015 08:32 PM
Last Post: C C
  Carbon's importance to ocean life's survival 252 million years ago C C 0 459 Apr 4, 2015 07:51 PM
Last Post: C C

Users browsing this thread: 1 Guest(s)