Metaphysical Status of Quantities + Platonism in the Philosophy of Mathematics

#1
C C Offline
The Metaphysical Status of Quantities
http://thebjps.typepad.com/my-blog/2017/...wolff.html

EXCERPT: Quantities pose peculiar epistemological and metaphysical challenges. A natural way to describe what is special about quantities is to say that quantities, in contrast to other attributes, come in degrees. Dogs may be ranked by how fast they can run or how big they are, but there is no ranking of them by how much they are dogs. Being a dog is a sortal, whereas speed and size are quantities. A quantity’s ‘coming in degrees’ can be understood as saying that quantities have (at least) one dimension of variation. For many paradigmatic physical attributes, we find a range of possible ‘amounts’ of that attribute, which we typically express as numerical values in terms of some unit. Having a range of possible amounts seems to be required by the idea that a quantity is an attribute that comes in degrees: gradations are possible in virtue of there being different amounts of the same quantity. To understand the metaphysical status of quantities, we need some account of how a gradable property like mass relates to specific amounts of mass. In the metaphysics literature, this question is often formulated in terms of determinables and determinates. But since this terminology comes with a specific understanding of the relationship between quantities and magnitudes, I will not use these terms here. In fact, I argue that the model of determinables and determinates is ultimately a poor fit for quantities, despite superficially appealing features. A second intuitive way of characterizing what is different about quantities, when compared to other attributes, is that only quantities involve numbers....

MORE: http://thebjps.typepad.com/my-blog/2017/...wolff.html



Platonism in the Philosophy of Mathematics --substantive revision Thu Jan 18, 2018
https://plato.stanford.edu/entries/plato...thematics/

INTRO: Platonism about mathematics (or mathematical platonism) is the metaphysical view that there are abstract mathematical objects whose existence is independent of us and our language, thought, and practices. Just as electrons and planets exist independently of us, so do numbers and sets. And just as statements about electrons and planets are made true or false by the objects with which they are concerned and these objects’ perfectly objective properties, so are statements about numbers and sets. Mathematical truths are therefore discovered, not invented.

The most important argument for the existence of abstract mathematical objects derives from Gottlob Frege and goes as follows (Frege 1953). The language of mathematics purports to refer to and quantify over abstract mathematical objects. And a great number of mathematical theorems are true. But a sentence cannot be true unless its sub-expressions succeed in doing what they purport to do. So there exist abstract mathematical objects that these expressions refer to and quantify over.

Frege’s argument notwithstanding, philosophers have developed a variety of objections to mathematical platonism. Thus, abstract mathematical objects are claimed to be epistemologically inaccessible and metaphysically problematic. Mathematical platonism has been among the most hotly debated topics in the philosophy of mathematics over the past few decades....

MORE: https://plato.stanford.edu/entries/plato...thematics/
Reply
#2
RainbowUnicorn Offline
(Jan 21, 2018 02:09 AM)C C Wrote: Platonism in the Philosophy of Mathematics --substantive revision Thu Jan 18, 2018
https://plato.stanford.edu/entries/plato...thematics/

INTRO: Platonism about mathematics (or mathematical platonism) is the metaphysical view that there are abstract mathematical objects whose existence is independent of us and our language, thought, and practices. Just as electrons and planets exist independently of us, so do numbers and sets. And just as statements about electrons and planets are made true or false by the objects with which they are concerned and these objects’ perfectly objective properties, so are statements about numbers and sets. Mathematical truths are therefore discovered, not invented.

The most important argument for the existence of abstract mathematical objects derives from Gottlob Frege and goes as follows (Frege 1953). The language of mathematics purports to refer to and quantify over abstract mathematical objects. And a great number of mathematical theorems are true. But a sentence cannot be true unless its sub-expressions succeed in doing what they purport to do. So there exist abstract mathematical objects that these expressions refer to and quantify over.

Frege’s argument notwithstanding, philosophers have developed a variety of objections to mathematical platonism. Thus, abstract mathematical objects are claimed to be epistemologically inaccessible and metaphysically problematic. Mathematical platonism has been among the most hotly debated topics in the philosophy of mathematics over the past few decades....

MORE: https://plato.stanford.edu/entries/plato...thematics/

Quote:INTRO: Platonism about mathematics (or mathematical platonism) is the metaphysical view that there are abstract mathematical objects whose existence is independent of us and our language, thought, and practices. Just as electrons and planets exist independently of us, so do numbers and sets. And just as statements about electrons and planets are made true or false by the objects with which they are concerned and these objects’ perfectly objective properties, so are statements about numbers and sets. Mathematical truths are therefore discovered, not invented.
agree completely, unfortunately the frailty of the human condition requires the need to own concepts & resources & land and to thus deny it from others to attain certain things.
longevity of a principals existance the least.


Quote:philosophers have developed a variety of objections to mathematical platonism.

subtle divisionism ?
an attempt to start a war between philosophers & mathamaticians ?
hhmmm...
is a theoretical physicist a mathamatician or a philosopher ?
Reply
#3
Syne Offline
(Jan 21, 2018 02:09 AM)C C Wrote: A natural way to describe what is special about quantities is to say that quantities, in contrast to other attributes, come in degrees. ... A second intuitive way of characterizing what is different about quantities, when compared to other attributes, is that only quantities involve numbers....
A distinction without difference. Rolleyes


Quote:Platonism about mathematics (or mathematical platonism) is the metaphysical view that there are abstract mathematical objects whose existence is independent of us and our language, thought, and practices. Just as electrons and planets exist independently of us, so do numbers and sets.

Being logically self-consistent or correlating to real-world relationships doesn't entail objective existence.
Reply
#4
C C Offline
Reply


Possibly Related Threads…
Thread Author Replies Views Last Post
  The Philosophy of Mathematics Ostronomos 0 97 Sep 15, 2025 06:34 PM
Last Post: Ostronomos
  The shift away from Metaphysical Naturalism Ostronomos 3 573 Jun 18, 2025 03:48 PM
Last Post: Ostronomos
  Putin's war on West ideology + Beauty + Status, class, and the crisis of expertise C C 0 292 Jun 5, 2025 07:42 PM
Last Post: C C
  Mathematical platonism as a problem for physicalism Magical Realist 2 570 Feb 22, 2025 07:41 PM
Last Post: Ostronomos
  The Beginnings of a God Mathematics for Humanity Ostronomos 0 401 Mar 28, 2024 09:22 PM
Last Post: Ostronomos
  The Ontological Status of Quantum Science, a Taoist's Perspective Ostronomos 1 369 Feb 24, 2023 07:40 PM
Last Post: Ostronomos
  Bayesianism + Philosophy of space and time + Intro to philosophy of race C C 0 355 Aug 7, 2022 03:45 PM
Last Post: C C
  The ontic status of reasons Magical Realist 5 896 Nov 23, 2021 02:08 AM
Last Post: C C
  Heidegger enjoys rock star status in Beijing C C 0 280 Mar 21, 2021 04:32 AM
Last Post: C C
  Religion vs Philosophy in 3 Minutes + Philosophy of Science with Hilary Putnam C C 2 1,028 Oct 16, 2019 05:26 PM
Last Post: C C



Users browsing this thread: 1 Guest(s)