Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5

Potentially safer substitutes for BPA + First woman to win maths' medal dies

#1
C C Offline
Maryam Mirzakhani, first woman to win maths' Fields Medal, dies
http://www.bbc.co.uk/news/science-environment-40617094

EXCERPT: Maryam Mirzakhani, the first woman to receive the prestigious Fields Medal for mathematics, has died in the US. The 40-year-old had breast cancer, which had spread to her bones. [...] Born in 1977, Prof Mirzakhani was brought up in post-revolutionary Iran and won two gold medals in the International Mathematical Olympiad as a teenager. She earned a PhD at Harvard University in 2004, and later a professorship at Stanford. Her receipt of the Fields Medal three years ago ended a long wait for women in the mathematics community for the prize, first established in 1936....



Potentially safer substitutes for BPA identified
https://www.sciencedaily.com/releses/201...140246.htm

RELEASEL Researchers at Baylor College of Medicine have identified a group of potential substitutes for bisphenol A (BPA) that lack the adverse effects typically associated with BPA. The researchers used automated microscopy- and image analysis-based technologies that allowed them to analyze multiple effects of the compounds in hours, instead of days or weeks, that are usually required for standard toxicology analyses. The results are published in PLOS ONE.

"BPA, a poster child for endocrine disrupting chemicals, is a synthetic compound present in a wide range of products including polycarbonate plastics used in the manufacture of water and infant bottles, on resins coating metal food cans and in many other applications," said corresponding author Dr. Michael Mancini, professor of molecular and cellular biology, director of the Integrated Microscopy Core at Baylor and co-director of the John S. Dunn Gulf Coast Consortium for Chemical Genomics.

Health concerns about BPA and BPA substitutes have emerged because, according to a National Health and Nutrition Examination Survey, BPA is widespread in human populations. BPA can leach into canned foods or bottled water, and people are exposed when consuming those foods. Further concern comes from animal studies showing that even low-dose exposure to BPA during development can result in cancer and negative effects on fetuses and newborns.

BPA, like other endocrine disrupting chemicals, or EDCs, affects the body by interacting with the hormonal or endocrine system; in particular, researchers have studied the effects of BPA binding to estrogen receptors. With BPA and other EDCs in the environment, rapid and sensitive testing of compounds using new technology platforms is now available to identify compounds with potentially similar effects in living organisms.

"People are exposed to the various plastics that contain BPA or BPA substitutes on a daily basis, so finding compounds that would allow us to make these plastics safer is an important contribution," said first author Dr. Adam Szafran, an Instructor in the Mancini lab and chief architect of the custom imaging and image analysis platforms.

A powerful, fast experimental approach to screen potential BPA substitutes

Earlier, Mancini and his colleagues developed a new, powerful experimental approach that combined high throughput microscopy techniques with specifically engineered cell lines and roboticized screening resources to individually test the effect of numerous compounds on biological functions; these experiments are highly efficient, generating a large number mechanistic and phenotypic measurements simultaneously, even with only very brief exposure of compounds to cells.

"We previously established highly multiplexed, single cell-oriented model systems to identify mechanisms involved in complex hormonal biology," Mancini said. "Unlike standard biochemical or toxicological assays, our approach quantifies levels of estrogen receptors, nuclear localization, DNA binding, large-scale chromatin modeling, protein interactions and transcription, and also include data on toxicity, cell proliferation and many other characteristics; all at the level of individual cells and in one assay that only takes a few hours."

A robotic system processes the samples and takes tens of thousands of images of the cells through an automated microscope. Later, in-house developed software analyzed and reported on more than 10 billion data points to create a comprehensive picture of what is going on inside and on the surface of the cells.

"When the paper describing our novel approach was published, Valspar Corp., an industrial coatings company, approached our lab," Mancini said. "They were interested in finding a compound that does not have activity on estrogen receptors, but still provides a means to extend the shelf life of canned foods. Traditional toxicology studies conducted in animals are time consuming, expensive and provide limited data regarding the mechanism involved. Our approach is much faster, sensitive and accurate as standard biochemical assays and allows for testing for numerous compounds at once."

The researchers used their automated approach to screen a number of BPA substitute candidates for their ability to bind to estrogen receptors and trigger their activity.

"Using our high-throughput assay, we identified two compounds that are relatively inactive when compared to the negative effects attributed to BPA or the BPA-substitutes in use today," Szafran said.

"The compounds we found passed our testing, but it doesn't mean that they are completely free of effects," Mancini said. "This would need further testing in animal studies."



When life gives you lemons, make bioplastics
https://www.sciencedaily.com/releases/20...093808.htm

RELEASE: From your phone case to airplane windows, polycarbonates are everywhere. Several million tons of polycarbonate are produced every year around the world. However, worries about the dangers of this material are increasing because of the toxicity of its precursors, especially bisphenol-A, a potential carcinogen.

Now, a team of chemists led by Arjan Kleij, ICIQ group leader and ICREA professor, developed a method to produce polycarbonates from limonene and CO2, both abundant and natural products. Besides, limonene is able to replace a dangerous building block currently used in commercial polycarbonates: bisphenol-A (also known as BPA). Although BPA has been repeatedly classified as a safe chemical by American and European agencies, some studies point out that it is a potential endocrine-disruptor, neurotoxic, and carcinogen. Some countries like France, Denmark and Turkey have banned the use of BPA in the production of baby bottles.

'BPA is safe, but still causes concerns and is produced from petroleum feedstock,' Kleij points out. 'Our approach replaces it with limonene, which can be isolated from lemons and oranges, giving us a much greener, more sustainable alternative,' he adds. Because fully replacing BPA for limonene can be complicated for most industries at this moment, Kleij explains that BPA can increasingly take over. 'We can start adding small quantities of limonene, then progressively substituting BPA,' he comments. 'Step by step, the adaptation process could lead to new limonene derived biomaterials with similar, or even enhanced and novel properties.'

The researchers not only succeeded in producing a more environmentally friendly polymer, but they also managed to improve its thermal properties. This limonene-derived polymer has the highest glass transition temperature ever reported for a polycarbonate. 'We were quite surprised to find this, because known bio-plastics have worse thermal properties than classic polymers,' explains Kleij. 'We were first sceptic about these findings, but we were able to reproduce these features consistently'. Having a high glass transition temperature has other implications: the new plastics require higher temperatures to melt, which make them safer for everyday use. Moreover, this new polymer can also offer a myriad of new applications for polycarbonates and block copolymers using appropriate material formulations.

Kleij and co-workers are currently negotiating with plastic producers to further advance the industrial manufacture of limonene-derived biomaterials.

- - -
Reply


Possibly Related Threads…
Thread Author Replies Views Last Post
  Maths: Randomness, axioms of probability, error correcting codes C C 1 504 May 26, 2018 03:27 PM
Last Post: Ostronomos
  Chemists argue end of RNA hypothesis + Cosmic shape (maths) + Euro quantum future C C 0 464 Dec 20, 2017 07:41 PM
Last Post: C C
  8 great reasons to do maths + Why QM? + Ridiculously short intro to QM C C 0 456 May 26, 2016 09:27 PM
Last Post: C C
  Made of maths? C C 0 637 Nov 19, 2014 01:51 AM
Last Post: C C
  The Omega number and why maths has no TOEs C C 0 739 Oct 28, 2014 05:08 AM
Last Post: C C



Users browsing this thread: 1 Guest(s)