Thread Rating:
  • 0 Vote(s) - 0 Average
  • 1
  • 2
  • 3
  • 4
  • 5

Copyrighting DNA Is a Bad Idea + Eukaryotic life arose little by little

#1
C C Offline
Copyrighting DNA Is a Bad Idea
http://nautil.us/blog/copyrighting-dna-is-a-bad-idea

EXCERPT: But in the midst of this debate, perhaps a more fundamental one is taking place—whether some of CRISPR’s future products, like customized DNA, qualify as copyrightable entities. Chris Holman, a professor at the University of Missouri Law School, says they do, just like works of art, literature, and software. “The law has come to accept a coded set of instructions as a copyrightable ‘literary work,’” he says. “An engineered DNA sequence is likewise a set of written instructions directed toward a [biological] machine, which directs that machine to perform a series of functions.” If a computer program is a ballad written in binary, it seems, then engineered DNA is a quatrain in nucleotides.

But Dan Burk, a professor of intellectual property law at the University of California, Irvine, disagrees. “Courts struggled for 25 years to find code-related things that were applicable under copyright. Finally, they gave up,” says Burk. “If you adopted Holman’s analogy and tried to put DNA into the copyright system, I’d expect the same results: One, you wouldn’t get adequate legal protection; two, it would be a headache to figure out for the courts; and three, copyright protections last really long—120 years—which is another reason it’s a bad idea for something like DNA. Why would you want to put a 120-year term on something changing really fast?”

Nautilus caught up with Burk to chat about how U.S. law is trying to make sense of the rapidly advancing field of gene editing....



Life as we know it most likely arose via 'long, slow dance'
https://www.sciencedaily.com/releases/20...140721.htm

RELEASE: The first eukaryote is thought to have arisen when simpler archaea and bacteria joined forces. But in an Opinion paper published June 16 in Trends in Cell Biology, researchers propose that new genomic evidence derived from a deep-sea vent on the ocean floor suggests that the molecular machinery essential to eukaryotic life was probably borrowed, little by little over time, from those simpler ancestors.

"We are beginning to think of eukaryotic origins as a slow process of growing intimacy--the result of a long, slow dance between kingdoms, and not a quick tryst, which is the way it is portrayed in textbooks," says Mukund Thattai of the National Centre for Biological Sciences in India.

The eukaryotic cells of plants, animals, and protists are markedly different from those of their single-celled, prokaryotic relatives, the archaea and bacteria. Eukaryotic cells are much larger and have considerably more internal complexity, including many internal membrane-bound compartments.

Although scientists generally agree that eukaryotes can trace their ancestry to a merger between archaea and bacteria, there's been considerable disagreement about what the first eukaryote and its immediate ancestors must have looked like. As Thattai and his colleagues Buzz Baum and Gautam Dey of University College London explain in their paper, that uncertainty has stemmed in large part from the lack of known intermediates that bridge the gap in size and complexity between prokaryotic precursors and eukaryotes. As a result, they say, the origin of the first eukaryotic cell has remained "one of the most enduring mysteries in modern biology."

That began to change last year with the discovery of DNA sequences for an organism that no one has ever actually seen living near a deep-sea vent on the ocean floor. The genome of the archaeon known as Lokiarchaeum ('Loki' for short) contains more "eukaryotic signature proteins" (ESPs) than any other prokaryote. Importantly, among those ESPs are proteins (small Ras/Arf-type GTPases) critical for eukaryotes' ability to direct traffic amongst all those intercellular compartments.

The authors consider the available data to explore an essential question: what might the archaeal ancestor of all eukaryotes look like? "If we could turn back the clock and peer inside this cell, would its cellular organization have been like that of an archaeal cell or more eukaryote-like?" Dey says.

As the closest known archaeal relative of eukaryotes, Loki helps to answer that question. The researchers say that the ESPs found in Loki are unlikely to work in the same way they do in eukarytoes. That's because Loki doesn't appear to have enzymes required for ESP association with membranes or key building blocks of the membrane trafficking machinery.

"However," Baum says, "the genome can be seen as 'primed' for eukaryogenesis. With the acquisition of a number of key genes and lipids from a bacterial symbiont, it would be possible for Loki-type cells to evolve a primitive membrane trafficking machinery and compartmentalization."

The researchers predict that, when Loki is finally isolated or cultured, "it will look more like an archaeon than a proto-eukaryote and will not have internal compartments or a vesicle-trafficking network." But its morphology and/or cell cycle might have complexities more often associated with eukaryotes.

Baum and Dey say they now plan to explore the basic cell biology of the related archaea Sulfolobus acidocaldarius, first isolated from an acidic hot spring in Yellowstone National Park.

"We believe it will be very difficult to crack the mysteries of eukaryogenesis without first understanding the archaeal cell biology," Dey says. "We are currently developing tools in the lab to study the cell cycle and cellular morphology of Sulfolobus at the single-cell level under the microscope. We would also love to catch a glimpse of Loki."
Reply
#2
Magical Realist Online
If my DNA were compared to a literary work, it'd be more a pulp fiction novel I'm sure. Built-in predispositions towards homosexuality, addiction, and mental illness, played out melodramatically in my 2 dimensional caricatured life.


[Image: 08e3d7720c0454558a8228b2e319d22f.jpg]
[Image: 08e3d7720c0454558a8228b2e319d22f.jpg]

Reply


Possibly Related Threads…
Thread Author Replies Views Last Post
  Research Multicellular life arose earlier + Virus that infected animals vital for embryo devel C C 3 123 Jan 26, 2024 02:24 AM
Last Post: Kornee
  Research Insect wings arose from gills? + Can animals evolve to keep up with climate change? C C 0 116 Jan 16, 2024 04:36 PM
Last Post: C C
  Article A new idea for how to assemble life C C 0 50 May 5, 2023 06:59 PM
Last Post: C C
  Interstellar picogram probe idea could carry engineered microbes to other stars C C 0 62 Jan 1, 2023 05:45 PM
Last Post: C C
  Photosynthesis is as old as life itself? + Using ancient DNA to rewrite human history C C 0 137 Mar 24, 2021 08:13 PM
Last Post: C C
  Sloppy science or groundbreaking idea? "Phase separation" divides biologists C C 0 128 Jan 21, 2021 10:18 PM
Last Post: C C
  DNA may not be life’s instruction book after all - just a jumbled list of ingredients C C 1 270 Apr 25, 2020 12:19 PM
Last Post: confused2
  After you die, these genes come to life + Was Darwin's idea right after all? C C 1 254 Aug 5, 2019 05:51 PM
Last Post: Yazata



Users browsing this thread: 1 Guest(s)