Dec 28, 2025 04:11 PM
https://www.space.com/astronomy/dark-uni...k-for-them
EXCEPTS: It could be that dark matter isn't made of zillions of tiny particles flying through the universe. Instead, it could be composed of bunched-up collections of much larger objects. In particular, the researchers behind a new study, published in November 2025 in the open access server arXiv, investigated two kinds of exotic objects.
The first is known as a boson star. In this model, dark matter is made of an ultra-ultra-ultra light particle — potentially millions of times lighter than neutrinos, the lightest known particles. They would be so light that their quantum nature would make them appear more like waves at galactic scales than like individual particles. But these waves would sometimes bunch up and collect on themselves, pulling together with their own gravity, without collapsing.
Another possibility is called Q-balls. In this model, dark matter isn't a particle at all but rather a quantum field that soaks all of space and time. Due to a special property of this field, it could occasionally pinch off, creating gigantic, stable, lump-like balls that wander the cosmos like a floating piece of flour in gravy that hasn't been mixed well.
Both boson stars and Q-balls, which live under the more general heading of exotic astrophysical dark objects (EADOs), are difficult to detect. They're large — roughly star-size — but they do not emit light of their own, making them nearly invisible in our scans of the cosmos.
[...] The astronomers behind the study propose a campaign using Gaia data to search for Q-balls and boson stars by looking for their unique, "smoking gun" signal of sudden jumps in stellar positions. Depending on how many are out there, Gaia may have observed up to several thousand EADOs... (MORE - missing details)
EXCEPTS: It could be that dark matter isn't made of zillions of tiny particles flying through the universe. Instead, it could be composed of bunched-up collections of much larger objects. In particular, the researchers behind a new study, published in November 2025 in the open access server arXiv, investigated two kinds of exotic objects.
The first is known as a boson star. In this model, dark matter is made of an ultra-ultra-ultra light particle — potentially millions of times lighter than neutrinos, the lightest known particles. They would be so light that their quantum nature would make them appear more like waves at galactic scales than like individual particles. But these waves would sometimes bunch up and collect on themselves, pulling together with their own gravity, without collapsing.
Another possibility is called Q-balls. In this model, dark matter isn't a particle at all but rather a quantum field that soaks all of space and time. Due to a special property of this field, it could occasionally pinch off, creating gigantic, stable, lump-like balls that wander the cosmos like a floating piece of flour in gravy that hasn't been mixed well.
Both boson stars and Q-balls, which live under the more general heading of exotic astrophysical dark objects (EADOs), are difficult to detect. They're large — roughly star-size — but they do not emit light of their own, making them nearly invisible in our scans of the cosmos.
[...] The astronomers behind the study propose a campaign using Gaia data to search for Q-balls and boson stars by looking for their unique, "smoking gun" signal of sudden jumps in stellar positions. Depending on how many are out there, Gaia may have observed up to several thousand EADOs... (MORE - missing details)
