May 29, 2025 01:59 PM
https://www.eurekalert.org/news-releases/1085530
INTRO: The Atlantic meridional overturning circulation, commonly referred to as the “AMOC,” is a system of ocean currents confined to the Atlantic basin that plays a crucial role in regulating Earth’s climate by transporting heat from the Southern to the Northern Hemisphere. The AMOC also modulates regional weather, from the mild summers in Europe to the monsoon seasons in Africa and India.
Climate models have long predicted that global warming will cause the AMOC to weaken, with some projecting substantial weakening amounting to a near-collapse relative to the AMOC’s strength today. Such a weakening would have far-reaching consequences, including changes in regional sea level rise and major shifts in regional climate, such as colder conditions in northern Europe and drier weather in parts of the Amazon and West Africa.
However, a new study from Caltech finds that although the AMOC will weaken under global warming, it is likely to do so to a much lesser extent than current projections suggest. The team developed a simplified physical model based on fundamental principles of ocean circulation—specifically, how density differences and the AMOC’s depth are related—that also incorporates real-world measurements of the ocean current’s strength, collected over 20 years through the use of monitoring arrays and other observationally constrained products of the Atlantic basin.
The researchers found that the AMOC will weaken by around 18 to 43 percent at the end of the 21st century. While this does represent some weakening, it does not represent substantial weakening that the more extreme climate model projections suggest. This new understanding significantly narrows the range of future AMOC weakening, addressing a long-standing uncertainty in climate science.
The study is described in a paper appearing in the journal Nature Geoscience. The research was conducted in the laboratories of Tapio Schneider, the Theodore Y. Wu Professor of Environmental Science and Engineering; and Andrew Thompson, the John S. and Sherry Chen Professor of Environmental Science and Engineering, director of The Ronald and Maxine Linde Center for Global Environmental Science, and executive officer for Environmental Science and Engineering... (MORE - details, no ads)
INTRO: The Atlantic meridional overturning circulation, commonly referred to as the “AMOC,” is a system of ocean currents confined to the Atlantic basin that plays a crucial role in regulating Earth’s climate by transporting heat from the Southern to the Northern Hemisphere. The AMOC also modulates regional weather, from the mild summers in Europe to the monsoon seasons in Africa and India.
Climate models have long predicted that global warming will cause the AMOC to weaken, with some projecting substantial weakening amounting to a near-collapse relative to the AMOC’s strength today. Such a weakening would have far-reaching consequences, including changes in regional sea level rise and major shifts in regional climate, such as colder conditions in northern Europe and drier weather in parts of the Amazon and West Africa.
However, a new study from Caltech finds that although the AMOC will weaken under global warming, it is likely to do so to a much lesser extent than current projections suggest. The team developed a simplified physical model based on fundamental principles of ocean circulation—specifically, how density differences and the AMOC’s depth are related—that also incorporates real-world measurements of the ocean current’s strength, collected over 20 years through the use of monitoring arrays and other observationally constrained products of the Atlantic basin.
The researchers found that the AMOC will weaken by around 18 to 43 percent at the end of the 21st century. While this does represent some weakening, it does not represent substantial weakening that the more extreme climate model projections suggest. This new understanding significantly narrows the range of future AMOC weakening, addressing a long-standing uncertainty in climate science.
The study is described in a paper appearing in the journal Nature Geoscience. The research was conducted in the laboratories of Tapio Schneider, the Theodore Y. Wu Professor of Environmental Science and Engineering; and Andrew Thompson, the John S. and Sherry Chen Professor of Environmental Science and Engineering, director of The Ronald and Maxine Linde Center for Global Environmental Science, and executive officer for Environmental Science and Engineering... (MORE - details, no ads)
