Dec 21, 2024 02:32 AM
https://www.eurekalert.org/news-releases/1068377
EXCERPT: Only limited by the speed of light, quantum teleportation could make communications nearly instantaneous. The process works by harnessing quantum entanglement, a technique in which two particles are linked, regardless of the distance between them. Instead of particles physically traveling to deliver information, entangled particles exchange information over great distances — without physically carrying it.
“In optical communications, all signals are converted to light,” Kumar explained. “While conventional signals for classical communications typically comprise millions of particles of light, quantum information uses single photons.”
Before Kumar’s new study, conventional wisdom suggested that individual photons would drown in cables filled with the millions of light particles carrying classical communications. It would be like a flimsy bicycle trying to navigate through a crowded tunnel of speeding heavy-duty trucks.
Kumar and his team, however, found a way to help the delicate photons steer clear of the busy traffic. After conducting in-depth studies of how light scatters within fiberoptic cables, the researchers found a less crowded wavelength of light to place their photons. Then, they added special filters to reduce noise from regular Internet traffic.
“We carefully studied how light is scattered and placed our photons at a judicial point where that scattering mechanism is minimized,” Kumar said. “We found we could perform quantum communication without interference from the classical channels that are simultaneously present.” (MORE -details, no ads)
EXCERPT: Only limited by the speed of light, quantum teleportation could make communications nearly instantaneous. The process works by harnessing quantum entanglement, a technique in which two particles are linked, regardless of the distance between them. Instead of particles physically traveling to deliver information, entangled particles exchange information over great distances — without physically carrying it.
“In optical communications, all signals are converted to light,” Kumar explained. “While conventional signals for classical communications typically comprise millions of particles of light, quantum information uses single photons.”
Before Kumar’s new study, conventional wisdom suggested that individual photons would drown in cables filled with the millions of light particles carrying classical communications. It would be like a flimsy bicycle trying to navigate through a crowded tunnel of speeding heavy-duty trucks.
Kumar and his team, however, found a way to help the delicate photons steer clear of the busy traffic. After conducting in-depth studies of how light scatters within fiberoptic cables, the researchers found a less crowded wavelength of light to place their photons. Then, they added special filters to reduce noise from regular Internet traffic.
“We carefully studied how light is scattered and placed our photons at a judicial point where that scattering mechanism is minimized,” Kumar said. “We found we could perform quantum communication without interference from the classical channels that are simultaneously present.” (MORE -details, no ads)
