Oct 30, 2024 05:17 PM
https://www.eurekalert.org/news-releases/1063075
INTRO: Retrofitting a portion of the US shipping fleet from internal combustion engines to battery-electric systems could significantly reduce greenhouse gas emissions and be largely cost effective by 2035, according to a new study from Berkeley Lab researchers recently published in Nature Energy.
Shipping represents 3% of total US greenhouse gas emissions from transportation, making it an important target for decarbonization. But electrifying ships is more challenging than electrifying cars from both a technical and a market perspective. A ship is a much bigger capital investment than a car and has a lifespan of several decades. While better battery technology in recent years has meant EVs with longer ranges, ships are vastly heavier than cars and can travel very long distances between ports. These heavy weights and long distances have led some to think that electrifying shipping isn’t feasible.
The researchers decided to test that assumption, said Won Young Park, the study’s lead and an energy policy researcher at Berkeley Lab.
“Our analysis includes the feasibility of electrification for 100% of all trips, while also exploring excluding a small percentage of very long single trips, which could be potentially addressed through optimized operations across multiple vessels,” he said. “Declining battery costs coupled with increasing battery energy densities, cleaner grids, optimized vessel operations, and valuing the battery’s second life create a unique electrification opportunity in domestic shipping.” (MORE - details, no ads)
INTRO: Retrofitting a portion of the US shipping fleet from internal combustion engines to battery-electric systems could significantly reduce greenhouse gas emissions and be largely cost effective by 2035, according to a new study from Berkeley Lab researchers recently published in Nature Energy.
Shipping represents 3% of total US greenhouse gas emissions from transportation, making it an important target for decarbonization. But electrifying ships is more challenging than electrifying cars from both a technical and a market perspective. A ship is a much bigger capital investment than a car and has a lifespan of several decades. While better battery technology in recent years has meant EVs with longer ranges, ships are vastly heavier than cars and can travel very long distances between ports. These heavy weights and long distances have led some to think that electrifying shipping isn’t feasible.
The researchers decided to test that assumption, said Won Young Park, the study’s lead and an energy policy researcher at Berkeley Lab.
“Our analysis includes the feasibility of electrification for 100% of all trips, while also exploring excluding a small percentage of very long single trips, which could be potentially addressed through optimized operations across multiple vessels,” he said. “Declining battery costs coupled with increasing battery energy densities, cleaner grids, optimized vessel operations, and valuing the battery’s second life create a unique electrification opportunity in domestic shipping.” (MORE - details, no ads)
