Aug 22, 2024 08:03 PM
https://www.quantamagazine.org/mathemati...-20240821/
EXCERPT: In 1973, the prominent physicists Stephen Hawking, John Bardeen and Brandon Carter asserted that extremal black holes can’t exist in the real world — that there is simply no plausible way that they can form. Nevertheless, for the past 50 years, extremal black holes have served as useful models in theoretical physics. “They have nice symmetries that make it easier to calculate things,” said Gaurav Khanna of the University of Rhode Island, and this allows physicists to test theories about the mysterious relationship between quantum mechanics and gravity
Now two mathematicians have proved Hawking and his colleagues wrong. The new work — contained in a pair of recent papers by Christoph Kehle of the Massachusetts Institute of Technology and Ryan Unger of Stanford University and the University of California, Berkeley — demonstrates that there is nothing in our known laws of physics to prevent the formation of an extremal black hole.
Their mathematical proof is “beautiful, technically innovative and physically surprising,” said Mihalis Dafermos, a mathematician at Princeton University (and Kehle’s and Unger’s doctoral adviser). It hints at a potentially richer and more varied universe in which “extremal black holes could be out there astrophysically,” he added.
That doesn’t mean they are. “Just because a mathematical solution exists that has nice properties doesn’t necessarily mean that nature will make use of it,” Khanna said. “But if we somehow find one, that would really [make] us think about what we are missing.” Such a discovery, he noted, has the potential to raise “some pretty radical kinds of questions.” (MORE - missing details)
EXCERPT: In 1973, the prominent physicists Stephen Hawking, John Bardeen and Brandon Carter asserted that extremal black holes can’t exist in the real world — that there is simply no plausible way that they can form. Nevertheless, for the past 50 years, extremal black holes have served as useful models in theoretical physics. “They have nice symmetries that make it easier to calculate things,” said Gaurav Khanna of the University of Rhode Island, and this allows physicists to test theories about the mysterious relationship between quantum mechanics and gravity
Now two mathematicians have proved Hawking and his colleagues wrong. The new work — contained in a pair of recent papers by Christoph Kehle of the Massachusetts Institute of Technology and Ryan Unger of Stanford University and the University of California, Berkeley — demonstrates that there is nothing in our known laws of physics to prevent the formation of an extremal black hole.
Their mathematical proof is “beautiful, technically innovative and physically surprising,” said Mihalis Dafermos, a mathematician at Princeton University (and Kehle’s and Unger’s doctoral adviser). It hints at a potentially richer and more varied universe in which “extremal black holes could be out there astrophysically,” he added.
That doesn’t mean they are. “Just because a mathematical solution exists that has nice properties doesn’t necessarily mean that nature will make use of it,” Khanna said. “But if we somehow find one, that would really [make] us think about what we are missing.” Such a discovery, he noted, has the potential to raise “some pretty radical kinds of questions.” (MORE - missing details)
