 Jul 31, 2024 05:40 PM
Jul 31, 2024 05:40 PM 
	
		https://www.eurekalert.org/news-releases/1053100
INTRO: Thanks to an accidental discovery, researchers at the University of British Columbia have created a new super-black material that absorbs almost all light, opening potential applications in fine jewelry, solar cells and precision optical devices.
Professor Philip Evans and PhD student Kenny Cheng were experimenting with high-energy plasma to make wood more water-repellent. However, when they applied the technique to the cut ends of wood cells, the surfaces turned extremely black.
Measurements by Texas A&M University’s department of physics and astronomy confirmed that the material reflected less than one per cent of visible light, absorbing almost all the light that struck it.
Instead of discarding this accidental finding, the team decided to shift their focus to designing super-black materials, contributing a new approach to the search for the darkest materials on Earth.
“Ultra-black or super-black material can absorb more than 99 per cent of the light that strikes it – significantly more so than normal black paint, which absorbs about 97.5 per cent of light,” explained Dr. Evans, a professor in the faculty of forestry and BC Leadership Chair in Advanced Forest Products Manufacturing Technology.
Super-black materials are increasingly sought after in astronomy, where ultra-black coatings on devices help reduce stray light and improve image clarity. Super-black coatings can enhance the efficiency of solar cells. They are also used in making art pieces and luxury consumer items like watches.
The researchers have developed prototype commercial products using their super-black wood, initially focusing on watches and jewelry, with plans to explore other commercial applications in the future... (MORE - details, no ads)
PAPER: http://dx.doi.org/10.1002/adsu.202400184
	
	
INTRO: Thanks to an accidental discovery, researchers at the University of British Columbia have created a new super-black material that absorbs almost all light, opening potential applications in fine jewelry, solar cells and precision optical devices.
Professor Philip Evans and PhD student Kenny Cheng were experimenting with high-energy plasma to make wood more water-repellent. However, when they applied the technique to the cut ends of wood cells, the surfaces turned extremely black.
Measurements by Texas A&M University’s department of physics and astronomy confirmed that the material reflected less than one per cent of visible light, absorbing almost all the light that struck it.
Instead of discarding this accidental finding, the team decided to shift their focus to designing super-black materials, contributing a new approach to the search for the darkest materials on Earth.
“Ultra-black or super-black material can absorb more than 99 per cent of the light that strikes it – significantly more so than normal black paint, which absorbs about 97.5 per cent of light,” explained Dr. Evans, a professor in the faculty of forestry and BC Leadership Chair in Advanced Forest Products Manufacturing Technology.
Super-black materials are increasingly sought after in astronomy, where ultra-black coatings on devices help reduce stray light and improve image clarity. Super-black coatings can enhance the efficiency of solar cells. They are also used in making art pieces and luxury consumer items like watches.
The researchers have developed prototype commercial products using their super-black wood, initially focusing on watches and jewelry, with plans to explore other commercial applications in the future... (MORE - details, no ads)
PAPER: http://dx.doi.org/10.1002/adsu.202400184

 
 
