May 21, 2024 11:14 PM
https://www.eurekalert.org/news-releases/1045417
INTRO: Using drones to harvest wind energy could play a significant role in the UK’s net-zero mission.
University of Bristol’s Lecturer in Flight Dynamics and Control Dr Duc H. Nguyen has landed a £375,000 grant from the Engineering and Physical Sciences Research Council (EPSRC) to conduct further research into the emerging field of Airborne Wind Energy Systems (AWES).
By tethering a drone to a ground station, AWES harvests wind power at higher altitudes than conventional wind turbines. The high wind pulls the drone away from the ground station, driving the generator, and producing electricity.
This technology can benefit the UK’s energy sector by reducing its carbon footprint, providing offshore and onshore flexibility, and enhancing the ability to operate in remote areas.
To generate the most power, AWES must fly in intricate patterns while subjected to strong aerodynamic forces. This arrangement creates a complex system with delicate handling characteristics – a slight miscalculation could send the drone tumbling to the ground.
This is the challenge that Dr Nguyen and his collaborators hope to solve during this project. By improving AWES safety and efficiency, he hopes the project will pave the way for AWES commercialisation... (MORE - missing details)
INTRO: Using drones to harvest wind energy could play a significant role in the UK’s net-zero mission.
University of Bristol’s Lecturer in Flight Dynamics and Control Dr Duc H. Nguyen has landed a £375,000 grant from the Engineering and Physical Sciences Research Council (EPSRC) to conduct further research into the emerging field of Airborne Wind Energy Systems (AWES).
By tethering a drone to a ground station, AWES harvests wind power at higher altitudes than conventional wind turbines. The high wind pulls the drone away from the ground station, driving the generator, and producing electricity.
This technology can benefit the UK’s energy sector by reducing its carbon footprint, providing offshore and onshore flexibility, and enhancing the ability to operate in remote areas.
To generate the most power, AWES must fly in intricate patterns while subjected to strong aerodynamic forces. This arrangement creates a complex system with delicate handling characteristics – a slight miscalculation could send the drone tumbling to the ground.
This is the challenge that Dr Nguyen and his collaborators hope to solve during this project. By improving AWES safety and efficiency, he hopes the project will pave the way for AWES commercialisation... (MORE - missing details)
