
Faster-than-light travel could work within Einstein's physics, astrophysicist shows
https://www.sciencealert.com/faster-than...cist-shows
EXCERPTS: . . . There are some problems with this notion, however. Within conventional physics, in accordance with Albert Einstein's theories of relativity, there's no real way to reach or exceed the speed of light, which is something we'd need for any journey measured in light-years.
That hasn't stopped physicists from trying to break this universal speed limit, though. While pushing matter past the speed of light will always be a big no-no, spacetime itself has no such rule. In fact, the far reaches of the Universe are already stretching away faster than its light could ever hope to match.
To bend a small bubble of space in a similar fashion for transport purposes, we'd need to solve relativity's equations to create a density of energy that's lower than the emptiness of space. While this kind of negative energy happens on a quantum scale, piling up enough in the form of 'negative mass' is still a realm for exotic physics.
[...] In the recent work, Lentz proposes one such way we might be able to do this, thanks to what he calls a new class of hyper-fast solitons – a kind of wave that maintains its shape and energy while moving at a constant velocity (and in this case, a velocity faster than light).
According to Lentz's theoretical calculations, these hyper-fast soliton solutions can exist within general relativity, and are sourced purely from positive energy densities, meaning there's no need to consider exotic negative-energy-density sources that haven't yet been verified.
With sufficient energy, configurations of these solitons could function as 'warp bubbles', capable of superluminal motion, and theoretically enabling an object to pass through space-time while shielded from extreme tidal forces.
It's an impressive feat of theoretical gymnastics, although the amount of energy needed means this warp drive is only a hypothetical possibility for now... (MORE - missing details)
Are warp drives science now? ... https://youtu.be/YdVIBlyiyBA
https://www.youtube-nocookie.com/embed/YdVIBlyiyBA
https://www.sciencealert.com/faster-than...cist-shows
EXCERPTS: . . . There are some problems with this notion, however. Within conventional physics, in accordance with Albert Einstein's theories of relativity, there's no real way to reach or exceed the speed of light, which is something we'd need for any journey measured in light-years.
That hasn't stopped physicists from trying to break this universal speed limit, though. While pushing matter past the speed of light will always be a big no-no, spacetime itself has no such rule. In fact, the far reaches of the Universe are already stretching away faster than its light could ever hope to match.
To bend a small bubble of space in a similar fashion for transport purposes, we'd need to solve relativity's equations to create a density of energy that's lower than the emptiness of space. While this kind of negative energy happens on a quantum scale, piling up enough in the form of 'negative mass' is still a realm for exotic physics.
[...] In the recent work, Lentz proposes one such way we might be able to do this, thanks to what he calls a new class of hyper-fast solitons – a kind of wave that maintains its shape and energy while moving at a constant velocity (and in this case, a velocity faster than light).
According to Lentz's theoretical calculations, these hyper-fast soliton solutions can exist within general relativity, and are sourced purely from positive energy densities, meaning there's no need to consider exotic negative-energy-density sources that haven't yet been verified.
With sufficient energy, configurations of these solitons could function as 'warp bubbles', capable of superluminal motion, and theoretically enabling an object to pass through space-time while shielded from extreme tidal forces.
It's an impressive feat of theoretical gymnastics, although the amount of energy needed means this warp drive is only a hypothetical possibility for now... (MORE - missing details)
Are warp drives science now? ... https://youtu.be/YdVIBlyiyBA