https://www.eurekalert.org/news-releases/1059477
INTRO: A new study published in the journal Science suggests that an ordinary old log could help refine strategies to tackle climate change.
A team of researchers led by University of Maryland Atmospheric and Oceanic Science Professor Ning Zeng analyzed a 3,775-year-old log and the soil it was excavated from. Their analysis, published on September 27, 2024, revealed that the log had lost less than 5% carbon dioxide from its original state thanks to the low-permeability clay soil that covered it.
“The wood is nice and solid—you could probably make a piece of furniture out of it,” Zeng noted.
Understanding the unique environmental factors that kept that ancient log in mint condition could help researchers perfect an emerging climate solution known as “wood vaulting,” which involves taking wood that is not commercially viable—such as trees destroyed by disease or wildfires, old furniture or unused construction materials—and burying it to stop its decomposition.
Trees naturally sequester carbon dioxide—a potent planet-warming gas—for as long as they live, making tree-planting projects a popular method of mitigating climate change. But on the flip side, when trees die and decompose, that greenhouse gas is released back into the atmosphere, contributing to global warming.
“People tend to think, ‘Who doesn’t know how to dig a hole and bury some wood?’” Zeng said. “But think about how many wooden coffins were buried in human history. How many of them survived? For a timescale of hundreds or thousands of years, we need the right conditions.” (MORE - details, no ads)
INTRO: A new study published in the journal Science suggests that an ordinary old log could help refine strategies to tackle climate change.
A team of researchers led by University of Maryland Atmospheric and Oceanic Science Professor Ning Zeng analyzed a 3,775-year-old log and the soil it was excavated from. Their analysis, published on September 27, 2024, revealed that the log had lost less than 5% carbon dioxide from its original state thanks to the low-permeability clay soil that covered it.
“The wood is nice and solid—you could probably make a piece of furniture out of it,” Zeng noted.
Understanding the unique environmental factors that kept that ancient log in mint condition could help researchers perfect an emerging climate solution known as “wood vaulting,” which involves taking wood that is not commercially viable—such as trees destroyed by disease or wildfires, old furniture or unused construction materials—and burying it to stop its decomposition.
Trees naturally sequester carbon dioxide—a potent planet-warming gas—for as long as they live, making tree-planting projects a popular method of mitigating climate change. But on the flip side, when trees die and decompose, that greenhouse gas is released back into the atmosphere, contributing to global warming.
“People tend to think, ‘Who doesn’t know how to dig a hole and bury some wood?’” Zeng said. “But think about how many wooden coffins were buried in human history. How many of them survived? For a timescale of hundreds or thousands of years, we need the right conditions.” (MORE - details, no ads)