Scivillage.com Casual Discussion Science Forum
Research Did we just see a black hole explode? Physicists think so & it could explain all - Printable Version

+- Scivillage.com Casual Discussion Science Forum (https://www.scivillage.com)
+-- Forum: Science (https://www.scivillage.com/forum-61.html)
+--- Forum: Astrophysics, Cosmology & Astronomy (https://www.scivillage.com/forum-74.html)
+--- Thread: Research Did we just see a black hole explode? Physicists think so & it could explain all (/thread-19727.html)



Did we just see a black hole explode? Physicists think so & it could explain all - C C - Feb 4, 2026

Did we just see a black hole explode? Physicists think so & it could explain (almost) everything
https://www.eurekalert.org/news-releases/1115179

INTRO: In 2023, a subatomic particle called a neutrino crashed into Earth with such a high amount of energy that it should have been impossible. In fact, there are no known sources anywhere in the universe capable of producing such energy—100,000 times more than the highest-energy particle ever produced by the Large Hadron Collider, the world’s most powerful particle accelerator. However, a team of physicists at the University of Massachusetts Amherst recently hypothesized that something like this could happen when a special kind of black hole, called a “quasi-extremal primordial black hole,” explodes.

In new research published by Physical Review Letters, the team not only accounts for the otherwise impossible neutrino but shows that the elementary particle could reveal the fundamental nature of the universe.

Black holes exist, and we have a good understanding of their life cycle: an old, large star runs out of fuel, implodes in a massively powerful supernova and leaves behind an area of spacetime with such intense gravity that nothing, not even light, can escape. These black holes are incredibly heavy and are essentially stable.

But, as physicist Stephen Hawking pointed out in 1970, another kind of black hole—a primordial black hole (PBH), could be created not by the collapse of a star, but from the universe’s primordial conditions shortly after the Big Bang. PBHs exist only in theory so far, and, like standard black holes, are so massively dense that almost nothing can escape them—which is what makes them “black.” However, despite their density, PBHs could be much lighter than the black holes we have so far observed. Furthermore, Hawking showed that PBHs could slowly emit particles via what is now known as “Hawking radiation” if they got hot enough.

“The lighter a black hole is, the hotter it should be and the more particles it will emit,” says Andrea Thamm, co-author of the new research and assistant professor of physics at UMass Amherst. “As PBHs evaporate, they become ever lighter, and so hotter, emitting even more radiation in a runaway process until explosion. It’s that Hawking radiation that our telescopes can detect.”

If such an explosion were to be observed, it would give us a definitive catalog of all the subatomic particles in existence, including the ones we have observed, such as electrons, quarks and Higgs bosons, the ones that we have only hypothesized, like dark matter particles, as well as everything else that is, so far, entirely unknown to science. The UMass Amherst team has previously shown that such explosions could happen with surprising frequency—every decade or so—and if we were to pay attention, our current cosmos-observing instruments could register these explosions... (MORE - details, no ads)