Scivillage.com Casual Discussion Science Forum
Research DNA origami folded into tiny motor (engineering, design) - Printable Version

+- Scivillage.com Casual Discussion Science Forum (https://www.scivillage.com)
+-- Forum: Science (https://www.scivillage.com/forum-61.html)
+--- Forum: Architecture, Design & Engineering (https://www.scivillage.com/forum-127.html)
+--- Thread: Research DNA origami folded into tiny motor (engineering, design) (/thread-15294.html)



DNA origami folded into tiny motor (engineering, design) - C C - Jan 19, 2024

https://www.eurekalert.org/news-releases/1031866

INTRO: Scientists have created the world’s first working nanoscale electromotor, according to research published in the journal Nature Nanotechnology. The science team designed a turbine engineered from DNA that is powered by hydrodynamic flow inside a nanopore, a nanometer-sized hole in a membrane of solid-state silicon nitride.

The tiny motor could help spark research into future applications such as building molecular factories for useful chemicals or medical probes of molecules inside the bloodstream to detect diseases such as cancer.

“Common macroscopic machines become inefficient at the nanoscale,” said study co-author professor Aleksei Aksimentiev, a professor of physics at the University of Illinois at Urbana-Champagne. “We have to develop new principles and physical mechanisms to realize electromotors at the very, very small scales.”

The experimental work on the tiny motor was conducted by Cees Dekker of the Delft University of Technology and Hendrik Dietz of the Technical University of Munich.

Dietz is a world expert in DNA origami. His lab manipulated DNA molecules to make the tiny motor’s turbine, which consisted of 30 double-stranded DNA helices engineered into an axle and three blades of about 72 base pair length. Decker’s lab work demonstrated that the turbine can indeed rotate by applying an electric field. Aksimentiev’s lab carried out all-atom molecular dynamics simulations on a system of five million atoms to characterize the physical phenomena of how the motor works.

The system was the smallest representation that could yield meaningful results about the experiment; however, “it was one of the largest ever simulated from the DNA origami perspective,” Aksimentiev said... (MORE - details, no ads)