Scivillage.com Casual Discussion Science Forum

Full Version: Our universe could be collapsed by another Big Bang
You're currently viewing a stripped down version of our content. View the full version with proper formatting.
http://www.npr.org/sections/thetwo-way/2...d-universe

"For a universe so old and so illustrious, the end may be boring and lightning quick: According to one Fermi National Accelerator Laboratory theoretician, if what we know about the Higgs boson subatomic particle is true, the universe may come to an end when another universe slurps us up at light speed.

"If you use all the physics that we know now and you do what you think is a straightforward calculation, it's bad news," Joseph Lykken said at a meeting of the American Association for the Advancement of Science in Boston on Monday. "It may be that the universe we live in is inherently unstable and at some point billions of years from now it's all going to get wiped out. This has to do with the Higgs energy field itself."

Here's how he explained his theory to NBC News' Cosmic Log:

"He said the parameters for our universe, including the Higgs mass value as well as the mass of another subatomic particle known as the top quark, suggest that we're just at the edge of stability, in a 'metastable' state. Physicists have been contemplating such a possibility for more than 30 years. Back in 1982, physicists Michael Turner and Frank Wilczek wrote in Nature that "without warning, a bubble of true vacuum could nucleate somewhere in the universe and move outwards at the speed of light, and before we realized what swept by us our protons would decay away."

"Lykken put it slightly differently: 'The universe wants to be in a different state, so eventually to realize that, a little bubble of what you might think of as an alternate universe will appear somewhere, and it will spread out and destroy us.'"
According to Discovery News, Lykken said if this happens, it'll happen at light speed, which means if anyone is around to witness it — our solar system will be long gone — they'll be gone before they realize it."
Universe In A Bubble: [...] If Arkani-Hamed is correct, the risk of such destruction is very low. Statistically speaking, it’s not likely to happen for another 10^130 years, because the rate at which bubbles form is so exceedingly slow. There are more pressing threats to human existence. A vacuum-energy bubble could hit us before next year, but the chances of that are just 1/10^130. Put another way, the bubbles are forming so far apart that they do not percolate to fill the space like the froth on the top of a beer. Rather, they are like bubbles in an eternally fizzing, infinitely expanding Champagne bath – if you can imagine such a thing.

Things get especially interesting in the intermediate case: not inside or outside the bubble, but right on its surface. Now imagine you are a massive elementary particle sitting on the outside of the bubble just after it forms. For example, you might be one of the WIMPs (weakly interacting massive particles) we think make up most of the matter holding clusters of galaxies together. Such particles might have masses of order 1,000 times that of a proton. The bubble wall is accelerating outward, pushing you faster and faster. You would feel an acceleration of 10^34 times the acceleration you feel sitting on the surface of the Earth, or 10^34 Gs. Astronauts can stand only about 10 Gs acceleration in their spaceships. But being an elementary particle, you are tough.

According to Einstein’s equivalence principle, acceleration due to motion (as in a rocket ship firing its engines) and acceleration due to gravity (as on the surface of the Earth) are indistinguishable. You, the hardy WIMP particle, could think you were sitting not on an accelerating glass-like vacuum bubble, but on a massive glass-ball planet with a radius of 10^-16 centimetres. If then you were to apply Newton’s laws, from your acceleration of 10^34 Gs and your measured radius of 10^-16 centimetres, you would deduce that your glass-bubble planet has a mass of 1.5 million metric tons.

As the bubble wall pushed you outward, closer and closer to the speed of light, your clock would tick slower and slower, lengths along the direction of motion would contract, and your ideas of simultaneity would change. (These are more effects of special relativity.) As you moved closer to the speed of light you’d feel as if the current time was still simultaneous with the time the bubble was created. Also, because of length contraction, you’d think you were no further from the centre of the bubble than when you started. [...]

- - -